Energy and environment

led by Prof. Isabella Nicotera

Research focus on the design, development and characterization of nanostructured and macromolecular hybrid materials (nanocomposite polymer electrolytes) for innovative and high-performance electrochemical devices in the energy conversion and storage:

Fuel Cells and Electrolysers (PEMFC, AEMFC, PEM water electrolysis)

Solid-state Li-ion batteries

Electrochromic devices (intelligent photoelectrochromic windows)

The advanced techniques of the laboratory allow wide chemical-physical, rheological/mechanical, electrochemical characterization of materials, and advanced studies by NMR spectroscopy (PFGSE, relaxometry, MRI, MAS).

The Nuclear Magnetic Resonance spectroscopy is surely our primary experimental technique and it is also the most suited and appropriate to investigate the molecular dynamics and mechanisms which are the basis for the ionic conduction in such complex electrolytes, by the direct measurement of the self-diffusion coefficients and the relaxation times (T1 and T2), related to long-range and short-range mobility, respectively.

This tecnique is also applied for the studies concerning materials for the separation and storage of gases, and in particular CO2.

Last National &International Research Projects

period of the project: 2020-2023

Title: Innovative nanostructured materials and smart textile electrodes for new generation of batteries and supercapacitors

Project Acronym : INNENERMAT


Abstract

The project will be focused on the development of novel active materials for competitive energy storage devices: batteries and supercapacitors (SC) with a focus on the main components: active material, electrolyte and design of the device. It is planned to design structurally and chemically advanced functional carbon materials, smart textiles, metal oxides and hybrid materials to make a substantial advance in performance. Besides, improvements in the electrolytes through developing new polymers and gels will also be considered. Finally, due to the multidisciplinary consortium, it will be also possible to design flexible concepts for storage devices, with special emphasis in textile-based technologies. The participation of the industrial partners will allow to integrate easily all the new developments and to perform a proof-of-concept for different applications, allowing to reach TRL6 for flexible batteries and supercapacitors at the end of the project.


Partners:

CSIC-INCAR (Spain) Coordinator

DLR-Stuttgart (Germany)

VARTA Microbattery (Germany)

University Calabria (Italy)

Centro Ricerche ASTREA (Italy)

CNR-ITAE (Italy)

AMPERE

(FISR 2019)

period of the project: 2021-2023

Title (EN): Alkaline membranes and (platinum group metals)-free catalysts enabling innovative, open electrochemical devices for energy storage and conversion

Title (IT): Membrane alcaline e catalizzatori privi di metalli del gruppo del platino per dispositivi elettrochimici aperti di nuova generazione per l'immagazzinamento e la conversione di energia

Project Acronym : AMPERE


Abstract

...There has been a recent surge in interest for anion-exchange membranes (AEMs) as the electrolyte separator in different EECS devices such as fuel cells (AEMFCs) and electrolyzers (AEM-ELs). With respect to reference FCs and ECs mounting conventional acid electrolyte separators (e.g., perfluorinated systems such as NafionTM), electrocatalysis with AEMs is much more promising. Indeed, AEMs allow to devise AEMFCs and AEM-ELs that reach the performance level required by applications with electrocatalysts (ECs) that do not require a high loading of platinum-group metals (PGMs). This is due to the alkaline environment at the electrodes of AEMFCs and AEM-ELs. In addition, the use of AEMs helps mitigating the crossover of the reactants. AMPERE represents a coordinated, multi-pronged effort aimed at achieving a unitary target which consists in the development of MEAs including innovative functional materials and capable of a performance level beyond the state of the art for application in AEMFCs and AEM-ELs....


Partners:

  • Responsabile Scientifico del Progetto Prof. Piercarlo Mustarelli, Università degli Studi di MILANO-BICOCCA


  • Università degli Studi di PADOVA


  • Consiglio nazionale delle ricerche – CNR

NAMED-PEM

(PRIN Project)

period of the project: 2013-2016

Title: Advanced nanocomposite membranes and innovative electrocatalysts for durable polymer electrolyte membrane fuel cells

Abstract:

Large scale research efforts are needed to meet the efficiency, durability and cost requirements for both hydrogen and direct methanol fuel cells (DHFC and DMFC, respectively). Developing low-cost durable membranes and catalysts that tolerate a wide range of operating conditions is particularly challenging.

The scope of the present project is to prepare and characterize new electro-catalysts and innovative composite membranes for polymer electrolyte fuel cells (PEMFCs), both methanol- and hydrogen-fed. The investigation will address problems that, although well known, have not been satisfactorily approached as yet, thus strongly limiting the commercialization of these systems. Among such issues, it is worth mentioning the low kinetics for oxygen reduction and fuel oxidation, crossover of methanol or hydrogen from the anode to the cathode through the membrane, degradation of materials and their performance/durability in cells under critical temperature and relative humidity conditions. An important part of the project is devoted to investigate the behaviour of fuel cells subjected to freezing/thawing cycles, which may cause a dramatic loss of performance, possibly leading to the failure of the system in the absence of specific actions to avoid ice formation within the system.

Powerful ex-situ investigation tools for a deep understanding of both micro- and macro-scopic characteristics of the proposed materials are here considered. Also, in-situ characterization techniques (mainly, XAS and ECAFM measurements) will be used to monitor the behaviour of membrane-electrode assembly and its components in operating fuel cells. The experimental work will be supported by an intensive multi-scale modelling to rigorously and systematically integrate microscopic and interfacial phenomena into a macroscopic methanol- or hydrogen-fed PEMFC model.

Partners:

Sapienza University of Rome

University of Rome Tor Vergata

University of Pavia

University of Camerino

CNR- ITAE of Messina

University of Calabria (UNICAL)

University of Verona

Politecnico of Turin

μPERLA

(PON Project)

Title of the project: Programma di Energie Rinnovabili e Micro-Cogenerazione per l’Agroindustria

(Programme for Renewable Energies and Micro-Cogeneration for Agro-Industry)

period of the project: 2012-2015


Settore/Ambito: Energia e Risparmio Energetico

Sviluppo di tecnologie, prodotti e processi per le energie rinnovabili e/o per l’utilizzo razionale dell’energia e/o per l’efficienza energetica.


Sintesi del progetto

Il progetto mira a realizzare cicli energetici innovativi per il settore agroindustriale, grazie a sistemi flessibili di piccola taglia per l’autoproduzione di energia dal gas prodotto a partire dagli scarti agro-industriali e dall’energia solare con cogenerazione ad alta efficienza.

Il progetto persegue un obiettivo strategico unitario e mira allo sviluppo della filiera energetica agroindustriale attraverso il conseguimento coordinato di una pluralità di risultati attesi.

L'obiettivo strategico generale è la messa a punto di sistemi innovativi ed integrabili tra loro in Rete Intelligente (Smart-Grid) per la produzione decentrata e diffusa di energia elettrica e termica con alte efficienze di conversione e basse potenze.

Gli obiettivi specifici sono:

  • l'auto-sostenibilità energetica;

  • la messa in opera di cicli ultra-corti dal recupero di biomassa di scarto agricola ed agro-
    industriale e dal sole;

  • la micro-cogenerazione ad alta efficienza su scale da 1 kW a 100 kW.


  • Partenariato:
    Varat srl
    , Me. Ca. Pollino srl, Steel Tech srl, Ungaro srl, Innova Solar Energy srl, Tecnap srl, Interpiana, Mercadante, OSAS, Università della Calabria - UniCal), (Dipartimenti di Meccanica, Fisica, Modellistica per l’Ingegneria, Elettronica, Informatica e Sistemistica, Ingegneria Chimica e dei Materiali, Difesa del Suolo e Liaison Office, ufficio di Trasferimento Tecnologico di Ateneo), CNR-ITM, CNR-IPCF, ENEA,
    Consulenti:
    DeltaE
    (azienda spin-off dell’Università della Calabria), ICEA (Istituto per la certificazione etica e ambientale), Tecnoproject srl, DEG Engineering, Calpark (Parco scientifico e tecnologico della Calabria)


MAIN COLLABORATIONS

In this field, PCAM Lab has numerous scientific collaborations with various national and international academic institutions and research centres:

· School of Physical Sciences, University of Kent, Canterbury (UK) (Prof. Alan Chadwick);

· Helmholtz-Institut Ulm (HIU) (Germany), (Prof. Stefano Passerini)

· Hunter College-CUNY-New York (USA), (Prof. Steve Greenbaum);

· Department of Material Science, University of Ionannina (Greece) (Prof. D. Gournis);

· National Center for Scientific Research "Demokritos of Athens, (Dr. A. Enotiadis);

· Dept. of Chemical Engineering -Technion – Israel Institute of Technology, Haifa, Israel (Prof. Dario Dekel)

· Instituto de Carboquimica (CSIC) Zaragoza, SPAIN (Dr. Sebastian del Rio)

· Dipartimento Chimica- Università “La Sapienza”, Roma. (Prof. Navarra, Prof. Brutti)

· Dipartimento Chimica – Università di Pavia (Prof. Quartarone)

· Dipartimento di Scienze dei Materiali - Università di Milano Bicocca (prof. Mustarelli)

· Dipartimento di Ingegneria Industraile - Università di Padova (prof. Di Noto)

· CNR-ITAE-Messina (Aricò, Baglio, Carbone, Gatto...)

· Politecnico di Torino (prof. Gerbaldi, Prof. Specchia)

· Università Tor Vergata-Roma (prof. Licoccia, Prof. D’Epifanio)

· Institute of Nanotechnology (CNR-NANOTEC)-Lecce (Dr. Cossari)

Etc….